Selective One-Dimensional 13 C- 13 C Spin-Diffusion Solid-State Nuclear Magnetic Resonance Methods to Probe Spatial Arrangements in Biopolymers Including Plant Cell Walls, Peptides, and Spider Silk
Two-dimensional (2D) and 3D through-space 13C-13C homonuclear spin-diffusion techniques are powerful solid-state nuclear magnetic resonance (NMR) tools for extracting structural information from 13C-enriched biomolecules, but necessarily long acquisition times restrict their applications. In this work, we explore the broad utility and underutilized power of a chemical shift-selective one-dimensional (1D) version of a 2D 13C-13C spin-diffusion solid-state NMR technique.
The method, which is called 1D dipolar-assisted rotational resonance (DARR) difference, is applied to a variety of biomaterials including lignocellulosic plant cell walls, microcrystalline peptide fMLF, and black widow dragline spider silk. 1D 13C-13C spin-diffusion methods described here apply in select cases in which the 1D 13C solid-state NMR spectrum displays chemical shift-resolved moieties.
This is analogous to the selective 1D nuclear Overhauser effect spectroscopy (NOESY) experiment utilized in liquid-state NMR as a faster (1D instead of 2D) and often less ambiguous (direct sampling of the time domain data, coupled with increased signal averaging) alternative to 2D NOESY.
Selective 1D 13C-13C spin-diffusion methods are more time-efficient than their 2D counterparts such as proton-driven spin diffusion (PDSD) and dipolar-assisted rotational resonance.
The additional time gained enables measurements of 13C-13C spin-diffusion buildup curves and extraction of spin-diffusion time constants TSD, yielding detailed structural information.
Specifically, selective 1D DARR difference buildup curves applied to 13C-enriched hybrid poplar woody stems confirm strong spatial interaction between lignin and acetylated xylan polymers within poplar plant secondary cell walls, and an interpolymer distance of ∼0.45-0.5 nm was estimated. Additionally, Tyr/Gly long-range correlations were observed on isotopically enriched black widow spider dragline silks.
Neuronal calcitonin gene-related peptide promotes prostate tumor growth in the bone microenvironment
- Advanced stage of prostate cancer cells preferentially metastasizes to varying bones of prostate cancer patients, resulting in incurable disease with poor prognosis and limited therapeutical treatment options. Calcitonin gene-related peptide (CGRP), a neuropeptide produced by prostate gland, is known to play a pivotal role in facilitating tumor growth and metastasis of numerous human cancers.
- In this study, we aim to investigate the clinical relevance of CGRP in prostate cancer patients and the effects of CGRP and CGRP antagonists on prostate tumor growth in the mouse model. The prostate tumor-bearing mice were received either CGRP or CGRP antagonist treatment, and the tumor growth was monitored by quantification of luminescence intensities.
- We found that the CGRP+nerve fiber density and serum CGRP levels were substantially upregulated in the bone or serum specimens from advanced prostate cancer patients as well as in prostate tumor-bearing mice.
- Administration of CGRP promoted, whereas treatment of CGRP antagonists inhibited prostate tumor growth in the femurs of mice. In addition, CGRP treatment activated extracellular signal-regulated kinases (ERKs)/ Signal transducer and activator of transcription 3 (STAT3) signaling in prostate cancer cells. Targeting CGRP may serve as a potential therapeutic strategy for advanced prostate cancer patients.
Current Progress in Cross-Linked Peptide Self-Assemblies
Peptide-based fibrous supramolecular assemblies represent an emerging class of biomaterials that can realize various bioactivities and structures. Recently, a variety of peptide fibers with attractive functions have been designed together with the discovery of many peptide-based self-assembly units. Cross-linking of the peptide fibers is a key strategy to improve the functions of these materials. The cross-linking of peptide fibers forming three-dimensional networks in a dispersion can lead to changes in physical and chemical properties.
Hydrogelation is a typical change caused by cross-linking, which makes it applicable to biomaterials such as cell scaffold materials. Cross-linking methods, which have been conventionally developed using water-soluble covalent polymers, are also useful in supramolecular peptide fibers. In the case of peptide fibers, unique cross-linking strategies can be designed by taking advantage of the functions of amino acids. This review focuses on the current progress in the design of cross-linked peptide fibers and their applications.
NoPv1: a synthetic antimicrobial peptide aptamer targeting the causal agents of grapevine downy mildew and potato late blight
Grapevine (Vitis vinifera L.) is a crop of major economic importance. However, grapevine yield is guaranteed by the massive use of pesticides to counteract pathogen infections. Under temperate-humid climate conditions, downy mildew is a primary threat for viticulture. Downy mildew is caused by the biotrophic oomycete Plasmopara viticola Berl. & de Toni, which can attack grapevine green tissues.
In lack of treatments and with favourable weather conditions, downy mildew can devastate up to 75% of grape cultivation in one season and weaken newly born shoots, causing serious economic losses. Nevertheless, the repeated and massive use of some fungicides can lead to environmental pollution, negative impact on non-targeted organisms, development of resistance, residual toxicity and can foster human health concerns.
In this manuscript, we provide an innovative approach to obtain specific pathogen protection for plants. By using the yeast two-hybrid approach and the P. viticola cellulose synthase 2 (PvCesA2), as target enzyme, we screened a combinatorial 8 amino acid peptide library with the aim to identify interacting peptides, potentially able to inhibit PvCesa2.
Here, we demonstrate that the NoPv1 peptide aptamer prevents P. viticola germ tube formation and grapevine leaf infection without affecting the growth of non-target organisms and without being toxic for human cells. Furthermore, NoPv1 is also able to counteract Phytophthora infestans growth, the causal agent of late blight in potato and tomato, possibly as a consequence of the high amino acid sequence similarity between P. viticola and P. infestans cellulose synthase enzymes.
Distinct expression profiles of peptides in placentae from preeclampsia and normal pregnancies
This study sought to identify potential bioactive peptides from the placenta that are involved in preeclampsia (PE) to obtain information about the prediction, diagnosis and treatment of PE. The liquid chromatography/mass spectrometry was used to perform a comparative analysis of placental peptides in normal and PE pregnancies. Gene ontology (GO), pathway analysis and ingenuity pathway analysis (IPA) were used to evaluate the underlying biological function of the differential peptides based on their protein precursors.
Transwell assays and qPCR were used to study the effect of the identified bioactive peptides on the function of HTR-8/SVneo cells. A total of 392 upregulated peptides and 420 downregulated peptides were identified (absolute fold change ≥ 2 and adjusted P value < 0.05). The GO analysis, pathway analysis, and IPA revealed that these differentially expressed peptides play a role in PE.
In addition, the up-regulated peptide “DQSATALHFLGRVANPLSTA” derived from Angiotensinogen exhibited effect on the invasiveness of HTR-8/SVneo cells. The current preliminary research not only provides a new research direction for studying the pathogenesis of PE, but also brings new insights for the prediction, diagnosis and treatment of PE.